Oil market uncertainty, Google searches and extreme stock market volatility

Gilles De Truchis (LEO) Elena Dumitrescu (EconomiX) Anthony Paris (LEO) Sessi Tokpavi (LEO)

Workshop in Econometrics
Nantes
September 24th 2021
• Oil and oil products ⇒ 41.6% (30.5%) of consumption (supply) in 2018
 - Hold a key role despite energy transition
 - Large literature on oil-macroeconomics links

• Financialization of oil market since 2000’s (Chari and Christiano, 2017)
 - Growing interest in the oil-stock markets relationship
 - Especially since the Global Financial Crisis (Degiannakis et al., 2018)
• Negative impact of oil price changes on the returns of aggregate indices
 - Time varying link
 - Heterogeneous across sectors
 - Depends on type of oil shocks and volatility states of oil price

• But conflicting results on volatility spillovers
 - Depend on sectors
 - Oil volatility seems to lead energy and automotive sectors
 - But not financial, telecommunication or building sectors
 - Depend on time horizon
 - Oil volatility seems to lead SP500 volatility at 8 to 16 days
 - No spillovers at 2 to 4 days
Source: Degiannakis et al. (2018)
• Volatility spillovers are likely to be different in the tails than in the center of the distribution
 • Only Xiao et al. (2019) analyze volatility spillovers in their complete distribution (in China)
 • Highlight stronger spillovers in the upper tails
• We thus focus on these extreme events using US data

• Oil volatility usually interpreted as uncertainty
 • While volatility \Rightarrow risk
• We thus use oil-related Google search volume index (GSVI)
 • Useful way to measure unsophisticated investor attention (Da et al., 2011)
 • Oil prices predictor (Li et al., 2015)
 • OVX predictor (Campos et al., 2017)
 • Volatility predictor for oil, gasoline and natural gas (Afkhami et al., 2017)
• Daily GSVI [WTI, Crude oil, Brent, Oil news, Nymex, …]
 ⇒ the number of Google searches relative to the largest over the sample

![Figure 1: GSVI for “WTI”](image)
- Daily realized volatility measures for S&P500 companies
 - Realized volatility, Bipower variation, Median realized volatility, Realized semi-variance
 - For energy and financial (Bank, Finance and Insurance) portfolios (market cap weighted)

Figure 2: Realized volatility for energy portfolio
Data and Methodology

- **Granger causality test in extreme variance**
 - With \(IV_{1,t} \) and \(IV_{2,t} \) the integrated variance for 2 financial assets:
 \[
 \mathcal{H}_0 : \mathbb{E}\left(z_{1,t}(\alpha) | \mathcal{F}_{t-1}^{(1)} \right) = \mathbb{E}\left(z_{1,t}(\alpha) | \mathcal{F}_{t-1}^{(1)}, \mathcal{F}_{t-1}^{(2)} \right)
 \]
 - Where \(\mathcal{F}_{t-1}^{(i)} = (z_{i,t-H}, \ldots, z_{i,t-1}) \) is the information set at time \(t - 1 \)
 - And \(z_{i,t} \) an exceedance (extreme variance) indicator:
 \[
 z_{i,t} = \begin{cases}
 1 & \text{if } IV_{1,t} \geq q_{i,t}(\alpha) \\
 0 & \text{otherwise}
 \end{cases}
 \]
 - \(q_{i,t} \) estimated with a quantile heterogeneous autoregressive (HARQ) model
 - Using a Portmanteau-type statistic:
 \[
 Q(H) = T(T+2) \sum_{h=1}^{H} \frac{\hat{\rho}^2(h)}{T-h} \sim \chi^2(H), \text{ if } T \to \infty
 \]
 - Where \(\hat{\rho} \) is the sample cross-lagged correlation function associated with the estimated exceedance indicators
Table 1: Test results for causality from “WTI” to portfolios extreme risk

<table>
<thead>
<tr>
<th></th>
<th>rv</th>
<th>bv</th>
<th>medv</th>
<th>rsv</th>
<th></th>
<th>rv</th>
<th>bv</th>
<th>medv</th>
<th>rsv</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H = 5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0425</td>
<td>0.0273</td>
<td>0.0219</td>
<td>0.1739</td>
<td></td>
<td>0.0281</td>
<td>0.0628</td>
<td>0.0115</td>
<td>0.5233</td>
</tr>
<tr>
<td>Finance</td>
<td>0.0017</td>
<td>0.0027</td>
<td>0.1578</td>
<td>0.0468</td>
<td></td>
<td>0.0002</td>
<td>0.0166</td>
<td>0.0304</td>
<td>0.0513</td>
</tr>
<tr>
<td>$H = 10$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0786</td>
<td>0.1439</td>
<td>0.1110</td>
<td>0.2212</td>
<td></td>
<td>0.1123</td>
<td>0.3086</td>
<td>0.0991</td>
<td>0.4951</td>
</tr>
<tr>
<td>Finance</td>
<td>0.0018</td>
<td>0.0240</td>
<td>0.1294</td>
<td>0.0441</td>
<td></td>
<td>0.0002</td>
<td>0.0349</td>
<td>0.0388</td>
<td>0.2937</td>
</tr>
</tbody>
</table>

P-value in bold means the rejection of the null hypothesis of no causality from the keyword “WTI” to portfolios extreme risk.

- Uncertainty in the oil market leads to risk in stock markets
- The effect disappears after 1 week for energy sector
- Similar results with “Crude oil” for $\alpha = 10\%$ but no causality for $\alpha = 5\%$
- No causality found with other keywords
- However...
Table 2: Test results for causality from portfolios extreme risk to “WTI”

<table>
<thead>
<tr>
<th></th>
<th>$\alpha = 10%$</th>
<th></th>
<th>$\alpha = 5%$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rv</td>
<td>bv</td>
<td>medv</td>
</tr>
<tr>
<td>$H = 5$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0219</td>
<td>0.0926</td>
<td>0.1726</td>
</tr>
<tr>
<td>Finance</td>
<td>0.0122</td>
<td>0.0001</td>
<td>0.0009</td>
</tr>
<tr>
<td>$H = 10$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0045</td>
<td>0.1502</td>
<td>0.1380</td>
</tr>
<tr>
<td>Finance</td>
<td>0.0592</td>
<td>0.0001</td>
<td>0.0062</td>
</tr>
</tbody>
</table>

P-value in bold means the rejection of the null hypothesis of no causality from portfolios extreme risk to the keyword “WTI”

- Risk in stock markets also leads uncertainty in the oil market
- Similar results with “Crude oil” for $\alpha = 10\%$ and $\alpha = 5\%$
- Close results with “Brent”
- No causality found with other keywords
• But time varying behavior of this relationship

• 2 main periods with causality from “WTI”: 2006-2009 and 2014-2016
• 1 main period with causality from the energy sector: 2010-2012
• 1 main period with causality from the financial sector: 2014-2016
Table 3: Test results for causality from “WTI” to portfolios extreme risk 2006-2009

<table>
<thead>
<tr>
<th></th>
<th>rv</th>
<th>bv</th>
<th>medv</th>
<th>rsv</th>
<th></th>
<th>rv</th>
<th>bv</th>
<th>medv</th>
<th>rsv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α = 10%</td>
<td></td>
<td></td>
<td></td>
<td>α = 5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H = 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.3863</td>
<td>0.5028</td>
<td>0.6522</td>
<td>0.8178</td>
<td>0.1825</td>
<td>0.4240</td>
<td>0.5448</td>
<td>0.4197</td>
<td></td>
</tr>
<tr>
<td>Finance</td>
<td>0.0072</td>
<td>0.0067</td>
<td>0.0494</td>
<td>0.0935</td>
<td>0.0053</td>
<td>0.0135</td>
<td>0.0100</td>
<td>0.5174</td>
<td></td>
</tr>
<tr>
<td>H = 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0560</td>
<td>0.4418</td>
<td>0.3871</td>
<td>0.4098</td>
<td>0.1958</td>
<td>0.3003</td>
<td>0.3044</td>
<td>0.3008</td>
<td></td>
</tr>
<tr>
<td>Finance</td>
<td>0.0072</td>
<td>0.0067</td>
<td>0.0494</td>
<td>0.0935</td>
<td>0.0053</td>
<td>0.0135</td>
<td>0.0100</td>
<td>0.5174</td>
<td></td>
</tr>
</tbody>
</table>

P-value in bold means the rejection of the null hypothesis of no causality from the keyword “WTI” to portfolios extreme risk.

- Causality from “WTI” to financial sector
 - During boom period in oil market 2006-2008 and fall end of 2008
 - ≈ 60 in January 2006, ≈ 140 in July 2008 and ≈ 35 in January 2009
- No causality to the energy sector
- No causality from stocks to “WTI”
Table 4: Test results for causality from portfolios extreme risk to “WTI” 2010-2012

<table>
<thead>
<tr>
<th></th>
<th>$\alpha = 10%$</th>
<th></th>
<th>$\alpha = 5%$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rv</td>
<td>bv</td>
<td>medv</td>
</tr>
<tr>
<td>$H = 5$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0696</td>
<td>0.1795</td>
<td>0.0322</td>
</tr>
<tr>
<td>Finance</td>
<td>0.4997</td>
<td>0.4904</td>
<td>0.6423</td>
</tr>
<tr>
<td>$H = 10$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.2601</td>
<td>0.4526</td>
<td>0.1298</td>
</tr>
<tr>
<td>Finance</td>
<td>0.5471</td>
<td>0.5737</td>
<td>0.5799</td>
</tr>
</tbody>
</table>

P-value in bold means the rejection of the null hypothesis of no causality from the keyword “WTI” to portfolios extreme risk.

- **Causality from the energy sector to “WTI” mainly at short term and 10%**
 - Due to shale oil development
 - Or volatility in oil price moving between 80$ and 110$
- **No causality from the financial sector**
- **No causality from “WTI”**
Table 5: Test results for causality 2014-2016

<table>
<thead>
<tr>
<th></th>
<th>$\alpha = 10%$</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>$\alpha = 5%$</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rv</td>
<td>bv</td>
<td>medv</td>
<td>rsv</td>
<td>rv</td>
<td>bv</td>
<td>medv</td>
<td>rsv</td>
<td></td>
</tr>
<tr>
<td>$H = 5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“WTI” to Energy</td>
<td>0.1546</td>
<td>0.0053</td>
<td>0.0904</td>
<td>0.4877</td>
<td>0.1100</td>
<td>0.0224</td>
<td>0.0378</td>
<td>0.5942</td>
<td></td>
</tr>
<tr>
<td>“WTI” to Finance</td>
<td>0.0218</td>
<td>0.0373</td>
<td>0.0350</td>
<td>0.005</td>
<td>0.0363</td>
<td>0.0125</td>
<td>0.0363</td>
<td>0.4158</td>
<td></td>
</tr>
<tr>
<td>Finance to “WTI”</td>
<td>0.0376</td>
<td>0.0118</td>
<td>0.0572</td>
<td>0.000</td>
<td>0.4141</td>
<td>0.2754</td>
<td>0.2848</td>
<td>0.0213</td>
<td></td>
</tr>
<tr>
<td>$H = 10$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“WTI” to Energy</td>
<td>0.1244</td>
<td>0.0042</td>
<td>0.1312</td>
<td>0.5607</td>
<td>0.0817</td>
<td>0.0523</td>
<td>0.0333</td>
<td>0.8160</td>
<td></td>
</tr>
<tr>
<td>“WTI” to Finance</td>
<td>0.0961</td>
<td>0.0759</td>
<td>0.0134</td>
<td>0.0004</td>
<td>0.1109</td>
<td>0.0523</td>
<td>0.0755</td>
<td>0.0466</td>
<td></td>
</tr>
<tr>
<td>Finance to “WTI”</td>
<td>0.1322</td>
<td>0.0614</td>
<td>0.0981</td>
<td>0.0004</td>
<td>0.2334</td>
<td>0.0494</td>
<td>0.1711</td>
<td>0.0756</td>
<td></td>
</tr>
</tbody>
</table>

P-value in bold means the rejection of the null hypothesis of no causality.

- Period with the highest causality relationship
 - Two-way causality between “WTI” and the financial sector
 - Except from the energy sector to “WTI”
 - during fall in oil price
 - $\approx 100\$ before September 2014 and $\approx 50\$ in 2015
• Analyze causality relationships between oil uncertainty and extreme risks in energy and financial stocks

• Highlighting 3 main periods:
 - 2006-2009 when oil uncertainty leads extreme risks in the financial sector
 - 2010-2012 when extreme risks in the energy sector leads oil uncertainty
 - 2014-2016 when extreme events in oil uncertainty and stocks risks are interrelated

• Could be due to:
 - Shale oil development in 2010-2012
 - High rise and drop in oil prices

• Work still in progress in order to:
 - Analyze causality between oil uncertainty and oil volatility index (OVX)
 - ...
Thank you for your attention